Inferring Past Effective Population Size from Distributions of Coalescent Times
نویسندگان
چکیده
Inferring and understanding changes in effective population size over time is a major challenge for population genetics. Here we investigate some theoretical properties of random-mating populations with varying size over time. In particular, we present an exact solution to compute the population size as a function of time, [Formula: see text], based on distributions of coalescent times of samples of any size. This result reduces the problem of population size inference to a problem of estimating coalescent time distributions. To illustrate the analytic results, we design a heuristic method using a tree-inference algorithm and investigate simulated and empirical population-genetic data. We investigate the effects of a range of conditions associated with empirical data, for instance number of loci, sample size, mutation rate, and cryptic recombination. We show that our approach performs well with genomic data (≥ 10,000 loci) and that increasing the sample size from 2 to 10 greatly improves the inference of [Formula: see text] whereas further increase in sample size results in modest improvements, even under a scenario of exponential growth. We also investigate the impact of recombination and characterize the potential biases in inference of [Formula: see text] The approach can handle large sample sizes and the computations are fast. We apply our method to human genomes from four populations and reconstruct population size profiles that are coherent with previous finds, including the Out-of-Africa bottleneck. Additionally, we uncover a potential difference in population size between African and non-African populations as early as 400 KYA. In summary, we provide an analytic relationship between distributions of coalescent times and [Formula: see text], which can be incorporated into powerful approaches for inferring past population sizes from population-genomic data.
منابع مشابه
Decoding Coalescent Hidden Markov Models in Linear Time
In many areas of computational biology, hidden Markov models (HMMs) have been used to model local genomic features. In particular, coalescent HMMs have been used to infer ancient population sizes, migration rates, divergence times, and other parameters such as mutation and recombination rates. As more loci, sequences, and hidden states are added to the model, however, the runtime of coalescent ...
متن کاملGene tree distributions under the coalescent process.
Under the coalescent model for population divergence, lineage sorting can cause considerable variability in gene trees generated from any given species tree. In this paper, we derive a method for computing the distribution of gene tree topologies given a bifurcating species tree for trees with an arbitrary number of taxa in the case that there is one gene sampled per species. Applications for g...
متن کاملA separation-of-timescales approach to the coalescent in a continuous population.
This article presents an analysis of a model of isolation by distance in a continuous, two-dimensional habitat. An approximate expression is derived for the distribution of coalescence times for a pair of sequences sampled from specific locations in a rectangular habitat. Results are qualitatively similar to previous analyses of isolation by distance, but account explicitly for the location of ...
متن کاملSampling through time and phylodynamic inference with coalescent and birth–death models
Many population genetic models have been developed for the purpose of inferring population size and growth rates from random samples of genetic data. We examine two popular approaches to this problem, the coalescent and the birth–death-sampling model (BDM), in the context of estimating population size and birth rates in a population growing exponentially according to the birth–death branching p...
متن کاملCoalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity.
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coales...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 204 شماره
صفحات -
تاریخ انتشار 2016